mao mao έγραψε: 01 Φεβ 2025, 18:03
nik_killthemall έγραψε: 01 Φεβ 2025, 17:52
micmic έγραψε: 01 Φεβ 2025, 16:10
Αν παίξεις δύο ίδιες στήλες η πιθανότητα να μην κερδίσεις είναι ακριβώς η ίδια με το αν έπαιζες μόνο μία.
Φιλε εγω το ξερω, οι αλλοι κανουν οτι δεν το ξερουν.
Έχουμε ένα ζαρί και τρεις πχωρουμίτες. Ποντάρουν και οι τρεις κρυφά στο τι θα φέρει το ζάρι.
Ποια η πιθανότητα να μην πετύχει κανένας το αποτέλεσμα της ζαριάς ;
Δεκτον, δεχομαι οτι εχετε δικιο οταν ξερουμε εξαρχης ποσες στηλες (ποσοι πχωρουμιτες) παιζονται ! Η αποδειξη που ζηταγα ειναι η παρακατω :
Ορισμοι :
U = ενωση (ή)
/ = δεσμευμενη πιθανοτητα
^ = τομη (και)
Ενδεχομενο να μην πετυχει κανενας το αποτελεσμα της ζαριας = Α
Ενδεχομενο να ειναι και τα 3 πονταρισματα διαφορετικα = Β
Ενδεχομενο να ειναι ιδια μονο 2 πονταρισματα = Γ
Ενδεχομενο να ειναι ιδια και τα 3 πονταρισματα = Δ
Λύση :
Τα Β,Γ,Δ ειναι ξενα μεταξυ τους και η ενωση τους εχει πιθανοτητα 1 !
P(Β) = (6*5*4)/(6*6*6) = 20/36 = 55.55%
P(Γ) = 3*(6*5)/(6*6*6) = 15/36 = 41,66%
P(Δ) = (6)/(6*6*6) = 1/36 = 2,77%
Δεσμευμενες πιθανοτητες :
P(A/Β) = 3/6
P(A/Γ) = 4/6
P(A/Δ) = 5/6
Θεωρημα Ολικης πιθανοτητας
P(A) = P( A^(ΒUΓUΔ) ) = P( (A^B)U(A^Γ)U(A^Δ) ) = P(A^B) + P(A^Γ) + P(A^Δ) ) = P(A/B)*P(B) + P(A/Γ)*P(Γ) + P(A/Δ)*P(Δ) =
(3/6)*(20/36) + (4/6)*(15/36) + (5/6)*(1/36) => P(A) = 125 / 216
__________________
Το οποιο πραγματι αλγεβρικα ειναι ισο με αυτό που λέτε (1-1/6)^3.
Ωστοσο ειναι λαθος να πεις οτι αυτο προκυπτει απο το γινομενο των πιθανοτητων να μην νικησουν των τριων πχωρουμιτων. Γιατι ετσι δινεις την εντυπωση οτι συμβαινει ενα πειραμα, ενω στη πραγματικοτητα απο τη στιγμη που ειναι κρυφα τα πονταρισματα των 3 πχουρωμιτων, συμβαινουν
2 πειραματα και οχι ενα : το πρωτο πειραμα ειναι το ποιος συνδυασμος διπλων, τριπλων κλπ πονταρισματων θα ερθει και το δευτερο πειραμα ειναι η ζαρια.
οποτε το δευτερο πειραμα προκυπτει καθε φορα σαν δεσμευμενη πιθανοτητα του αποτελεσματος του πρωτου.
Μαλιστα η κατανομη των "στηλων" στο πρωτο πειραμα θεωρειται ΙΣΟΠΙΘΑΝΗ και προκυπτει απο το πληθος των συνδυασμων διπλων στηλων προς ολους τους δυνατους συνδυασμους !
Δηλ. η πιθανοτητα να εχουν παιχτει 5 εκ ιδιες στηλες
ειναι ιση με την πιθανοτητα να εχουν παιχτει 2,5 εκ ιδιες στηλες και 2,5 εκ διαφορετικες στηλες !